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Abstract

We develop a Markov decision process (MDP) model to examine military medical

evacuation (MEDEVAC) dispatch policies. To solve the MDP, we apply an ap-

proximate dynamic programming (ADP) technique. The problem of deciding which

aeromedical asset to dispatch to which service request is complicated by the service

locations and the priority class of each casualty event. We assume requests for MEDE-

VAC arrive sequentially, with the location and the priority of each casualty known

upon initiation of the request. The proposed model finds a high quality dispatching

policy which outperforms the traditional myopic policy of sending the nearest avail-

able unit. Utility is gained by servicing casualties based on both their priority and

the actual time until a casualty arrives at a medical treatment facility (MTF). The

model is solved using approximate policy iteration (API) and least squares temporal

difference (LSTD). Computational examples are used to investigate dispatch policies

for a scenario set in northern Syria. Results indicate that a myopic policy is not

always the best policy to use for quickly dispatching MEDEVAC units, and insight

is gained into the value of specific MEDEVAC locations.

Key words: Emergency Medical Dispatch, medical evacuation (MEDEVAC), Markov

decision processes, approximate dynamic programming, approximate policy iteration,

least squares temporal difference
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AN APPROXIMATE DYNAMIC PROGRAMMING MODEL

FOR MEDEVAC DISPATCHING

I. Introduction

The United States military uses two classification categories when evacuating

injured soldiers and civilians from the battlefield. These are medical evacuation

(MEDEVAC) and casualty evacuation (CASEVAC). The primary and preferred method

is MEDEVAC, which constitutes dedicated medical personnel on board the vehicle

that is transporting casualties. The second method, often used as a contingency, is

CASEVAC, in which there are no dedicated medical personnel on board to attend to

a casualty event while in transit to a medical treatment facility (MTF) (Department

of the Army, 2007). Any type of vehicle may be used to conduct MEDEVAC and

CASEVAC operations.

When a request for a MEDEVAC occurs, there are three categories of evacuation

precedence (Department of the Army, 2007):

Priority I, Urgent: Assigned to emergency cases that should be evacuated as soon

as possible and within a maximum of 1 hour in order to save life, limb, or eyesight,

to prevent complications of serious illness, or to avoid permanent disability.

Priority II, Priority: Assigned to sick and wounded personnel requiring prompt

medical care. This precedence is used when the individual should be evacuated within

4 hours or when an individual’s medical condition could deteriorate to such a degree

that he or she will become an URGENT precedence, or whose requirements for special
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treatment are not available locally, or who will suffer unnecessary pain or disability.

Priority III, Routine: Assigned to sick and wounded personnel requiring evacu-

ation but whose condition is not expected to deteriorate significantly. The sick and

wounded in this category should be evacuated within 24 hours.

Aerial MEDEVAC operations involve the use of dedicated helicopters, specifically

the UH-60 A/L Blackhawk. Helicopters are uniquely suited for MEDEVAC oper-

ations because they are able to travel faster, further, and access terrain which is

not accessible to ground vehicles. The ability to simultaneously treat and quickly

transport casualties from the point of injury (POI) to an MTF greatly increases the

chance of survival for casualties. During the Korean War, the United States military

experienced the first large-scale use of helicopters to remove casualties from the bat-

tlefield. Currently, survivability of injuries on the battlefield are at a historic high;

90% of all casualties survive, compared to 84% in Vietnam and 80% in World War

II (Eastridge et al., 2012). This improvement is attributed primarily to the speed in

which casualties are able to receive proper medical attention. A quote from United

States Army Surgeon, Major General Neel Spurgeon:

“Getting the casualty and the physician together as soon as possible is
the keystone of the practice of combat medicine...(Spurgeon, 1991)”

Recent conflicts have exhibited a shift from traditional force-on-force engage-

ments to counterinsurgency operations (COIN). With COIN, units are typically much

smaller and more geographically dispersed, causing a greater dispersion of critical re-

sources. As the area of the battlefield increases, helicopters provide a lifeline to these

soldiers, allowing them to operate further away from bases while still able to re-

ceive aerial support. From the inception of Operation Enduring Freedom (OEF) in

2



2001 until 2008, more than 3200 casualties have been transported using MEDEVAC

(Hartenstein, 2008).

When utilizing MEDEVAC assets, three different aspects need to be considered:

location, dispatching, and redeployment. The location of MEDEVAC assets is a

balance between maximizing coverage and minimizing response time. Placement may

be further constrained by force protection and maintenance necessities. Dispatching

of MEDEVAC units is often conducted using a myopic policy in which the nearest

MEDEVAC is launched to a POI regardless of its priority. The third aspect, dynamic

redeployment of ambulances, is alse possible. However, communication and crew

limitations often make this problematic and is not typically performed.

In this thesis we consider the MEDEVAC dispatching problem in which a dis-

patching authority must decide which MEDEVAC to send in response to a request

for MEDEVAC. Redeployment is not considered. A Markov decision process (MDP)

is contructed to model this MEDEVAC dispatching problem. We utilize an Approxi-

mate Dynamic Programming (ADP) approach to obtain high quality solutions to the

problem. The proposed ADP algorithm utilizes Least Squares Temporal Difference

(LSTD) policy evaluation within an Approximate Policy Iteration (API) framework.

Bellman error minimization is applied in the policy improvement phase to obtain im-

proved policies. To demonstrate the applicability of the model to the medical planning

process, we present a notional scenario involving the allied defense of northern Syria

in response to aggression by Islamic State (IS) militants.

This thesis is organized as follows. In Chapter 2 we review related research in the

contemporary literature. In Chapter 3 we present the MDP formulation of the prob-

lem and ADP algorithm to solve it. Chapter 4 contains the computational scenario

and testing results. In Chapter 5 we present the findings and conclusions.
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II. Literature Review

Our literature review focuses on two research areas. First, we examine research in

emergency medical systems (EMS) and MEDEVAC in order to inform the model of

the MEDEVAC dispatching problem. Next, research is focused on the field of ADP

to inform the development of the solution methodology.

2.1 EMS and MEDEVAC

The nature of MEDEVAC operations shares many inherent similarities with EMS.

Decisions need to be made quickly regarding which unit will serve a specific casualty

event. We initially examine research into EMS optimization, which can be traced

back to the late 1960’s and early 1970’s with papers on optimally locating EMS

units. Church & ReVelle (1974) examine the maximal coverage location problem

(MCLP), ensuring there is an ambulance within a specific distance or time from a

POI.

ReVelle & Hogan (1989) introduce a MCLP which builds upon the basic maxi-

mal covering problem by ensuring there is always an ambulance available within a

predetermined length of time in the event of another ambulance being unavailable.

Alsalloum & Rand (2006) extend the approach used by ReVelle & Hogan (1989); they

determine the minimum number of vehicles required to cover the largest possible area

given a set of constraints.

Batta et al. (1989) extend the MCLP by examining not only busy probabilities

for EMS units, but also the queuing of calls via the Hypercube model. Silva & Serra

(2008) expand upon covering problems by incorporating queuing theory as well as

establishing different patient priority levels.

Although locating assets is a critical aspect of EMS and MEDEVAC systems,
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the limitations for MEDEVAC placement are beyond the scope of this thesis. We

examine how to optimize dispatching. Initial research by Carter et al. (1972) found

that dispatching the nearest unit to a service did not always produce the lowest

average response time. This result is very important, as most EMS and MEDEVAC

systems operate using a myopic policy of sending the nearest unit to any patient.

More recent research by McLay & Mayorga (2010) utilize real-world EMS data

to examine optimal dispatching policies. In their model, McLay & Mayorga consider

fixed bases for responding units and measured response time thresholds (RTT) as a

measure for patient survivability. McLay & Mayorga obtain policies that decrease

RTT for high priority patients compared to a myopic policy.

Bandara et al. (2012) build upon the work of McLay & Mayorga (2010) using

patient survivability instead of RTT. This measure more closely mirrors patient out-

comes, provide more insight into the significance of any improvement. Mayorga et al.

(2013) continue to add depth to dispatching research by designing a constructive

heuristic to identify response districts for EMS units. They compare system per-

formance between respective policies of allowing units to service other districts and

forcing them to stay in their own district. These results are compared against myopic

and heuristic policies, and it is shown that all three policies perform better than the

myopic policy.

In order to optimize the MEDEVAC system, an objective function must be deter-

mined. Erkut et al. (2008) question the terms “coverage” and “performance” for an

EMS system. They propose the use of a monotonically decreasing function over time

for the probability of patient survivability as a measure of performance. Subsequent

work by Bandara et al. (2012) and Grannan et al. (2014) similarly use survivability

functions instead of the traditional RTT as a performance measure for their model.

A problem with the survivability function is the difficulty finding empirical evidence
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to support a particular functional form. Eastridge et al. (2012) provide extensive

statistics about combat deaths, but the response times are not known, preventing

the creation of an appropriate survivability function. Although Feero et al. (1995)

examine EMS response times relative to trauma survivability, their work is limited

to response times under eight minutes. MEDEVAC units typically need to travel

significantly further than EMS units, and so response times are significantly longer.

The goal of U.S. MEDEVAC support is to respond within 60 minutes from notifica-

tion to drop-off of the patient at a MTF (Garrett, 2013). The one-hour response is

sometimes referred to as the “Golden Hour”. Lerner & Moscati (2001) examine the

“Golden Hour,” which is mentioned in numerous trauma articles. However, its exact

origins and any quantifiable measure are not reported. We assume an exponentially

decreasing function to model patient outcome.

Research specifically into military MEDEVAC systems has been conducted re-

cently by Zeto et al. (2006), Fulton et al. (2010), Bastian (2010), Grannan et al.

(2014) and Keneally et al. (2014). Much of the research in military MEDEVAC con-

cerns optimal emplacement of assets. Zeto et al. use a maxi-min goal programming

approach adapted from Alsalloum & Rand (2006) in order to maximize coverage and

minimize the response times for MEDEVAC units in the Afghanistan theater. Fulton

et al. (2010) develop a stochastic model to determine where to emplace multiple med-

ical assets such as air and ground MEDEVAC units. Bastian (2010) develops a model

focusing on the performance measure of the UH-60 A/L combined with austere and

hostile conditions in which it operates. Using a combination of goal programming

and stochastic optimization, Bastian (2010) seeks to optimally emplace MEDEVAC

assets in Afghanistan.

Keneally et al. (2014) develop an MDP to examine MEDEVAC dispatch policy in

regional command south (RC-S) of the OEF theater. They use two priority classifi-
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cations, a reward function based on RTT, and Monte Carlo simulation with a Hawkes

process for casualty generation. The find that the myopic policies do not always lead

to optimal performance.

2.2 ADP

We also consider an MDP model. However, the curse of dimensionality prevents

us from applying the MDP solution techniques used by Keneally et al. (2014). We

turn our attention to ADP which has emerged as a technique to solve large or complex

problems for making sequential decisions under uncertainty. Powell (2012) provides

a broad overview of ADP and its origins from different research communities. He

found many communities use similar methods or algorithms to battle the curse of

dimensionality that many systems or problems face. The three curses of dimension-

ality that affect systems concern the state space, the outcome space, and the action

space. Powell presents four classes of policies, which refer to the mapping of a state to

an action, as being myopic cost function approximations, look-ahead policies, policy

function approximations, and value function approximations. ADP approaches also

incorporate hybrid policies, i.e. combining two or more classes. Researchers seeking

such policies are able to employ ADP techniques to determine such policies and solve

otherwise intractable MDPs. We use value function approximation when solving the

dispatching problem.

Maxwell et al. (2010) present an ADP approach to examine the potential of dy-

namically redeploying ambulances to maximize the number of patients that are served

within an RTT. They set the framework of their system using an MDP with a similar

state space to the MEDEVAC problem. At each event occurrence in their system,

such as a new call arrival or an ambulance bringing a patient to the hospital, a decision

is made to redeploy any available units to better cover the service area. They obtain
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a redeployment policy for this this high dimensional system using approximate value

iteration. They are able to demonstrate a significant improvement in EMS response

at two metropolitan cities using dynamic redeployment versus a static myopic policy.

Although there is much potential in dynamic routing and positioning of MEDE-

VAC units, the complexity of helicopter operations limits the ease and practicality of

dynamic routing. This thesis assumes all MEDEVAC units return to their base upon

service completion.

Bradtke & Barto (1996) introduce three temporal difference algorithms: normal-

ized temporal difference (NTD), recursive least squares temporal difference (RLSTD),

and LSTD. Temporal difference learning allows the system to learn the expected value

for a state-action pair. They prove all three converge to optimality when used with

a functional approximator. LSTD and RLSTD are able to extract more information

from each observation which in turn allows each algorithm to converge to optimality

faster than NTD. LSTD and RLSTD do require more computational for time each

observation; however, this is offset by its faster convergence rate.

Lagoudakis & Parr (2003) introduce a least squares policy iteration (LSPI) al-

gorithm which builds upon LSTD. Policy iteration (PI), first introduced by Howard

(1960), is a simple two-step iterative algorithm for stationary policies. First, the pol-

icy is evaluated to determine its value. Second, we attempt to improve the policy by

finding a policy variant which is monotonically increasing in value. API introduces

approximations to represent the value function and policy in order to make these

problems computationally tractable. Lagoudakis & Parr (2003) compare the perfor-

mance of LSPI to other reinforcement learning algorithms. They find LSPI performs

significantly better than Q-learning and is computationally faster.
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III. Methodology

3.1 MDP Formulation

When a casualty occurs and a MEDEVAC request is received, a decision must be

made quickly regarding which MEDEVAC asset to dispatch. Any delays in decision

making affect casualties’ survivability. Thus, it is critical to quickly and accurately

determine a high quality solution. The stochastic elements in the model are depicted

in Figure 1.

Figure 1. MEDEVAC Dispatch Timeline

We consider three casualty event categories: urgent, priority, and routine. In the

model, casualties are generated from clusters using a Poisson Hawkes process with rate

λ. Response times are independent for each casualty event and priority classification.

A monotonically decreasing function based on service time and casualty category is

used as the reward function. We incorporate queuing in the model to allow multiple

casualty events to occur and the decision to wait before launching a MEDEVAC. The

decision to wait can be advantageous if a low priority casualty event has occurred

while other MEDEVAC units are busy; it may be better to remain on standby until

other MEDEVAC units become available in case a high priority casualty event occurs.
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All casualties are evacuated to the nearest MTF. After a group of casualties is dropped

off, MEDEVAC units return to their originating base.

To model the system, we base the framework on the work of Maxwell et al. (2010).

We establish the state space for the MDP model as a tuple with a time state, an

event state, a MEDEVAC status vector, and a queue status vector. We represent

the system with the tuple s = (τ, ε,M,Q), wherein τ corresponds to the current

system time and ε corresponds to the current event. The main system components

are M = (m1,m2, ...,ma) and Q = (q1, q2, ..., qb), where mi contains information

about the ith MEDEVAC, a represents the maximum number of MEDEVACs in the

system, qj contains information about the jth casualty event in the queue, and b

represents the maximum number of casualty events allowed in the queue. The state

of MEDEVAC i is given as a tuple mi = (σi, di, ti), wherein σi is the status of the

MEDEVAC, di is the expected time to complete the current movement, and ti is the

starting time of any MEDEVAC movement. Once a MEDEVAC is launched to service

a casualty event, the queue status is updated. After a MEDEVAC drops off a group of

casualties, it returns to base where it then becomes available to launch. The status of

the MEDEVAC, σi, can be “idle”, “enroute to a casualty event”, “at POI”, “enroute

to MTF”, or “returning to base”. If the MEDEVAC is not idle, ti corresponds to the

starting time of the movement; otherwise, ti represents the time of the current event

cycle. The state of casualty event j in the queue is qj = (δj, lj, ζj, ηj), where δj is the

status of the casualty event in the jth position, lj is the location of the casualty event,

ζj is the time the casualty event arrived in the system, and ηj is the priority of the

casualty event.

Events are triggered by changes in the status of a MEDEVAC or an arrival of a call.

The event list is given in Table 1. The model assumes MEDEVAC dispatch decisions

only occur when an a event occurs. Although it is possible to reroute a MEDEVAC

10



Table 1. Event List

ε, event list:

Call arrives and is placed in the jth position

MEDEVAC i departs for call j at casualty event

MEDEVAC i arrives at caualty event for call j

MEDEVAC i leaves call j casualty event for MTF

MEDEVAC i delivers call j at MTF

MEDEVAC i departs MTF to return to base

MEDEVAC i arrives at base

mid-flight, delay and confusion in communication can cause large problems and this

practice is not typical in combat operations.

Let M (s) = {i : σi = “idle”} denote the set of MEDEVACs available for dispatch-

ing when the system is in state s.

Let Q(s) = {j : δj = “idle”} denote the set of casualty events awaiting service by

MEDEVAC when the system is in state s.

To capture dispatching decisions we let xij(s)=1 if MEDEVAC i is deployed to

casualty event j when the system is in state s, and 0 otherwise. The set of feasible

decisions can be written as:

X (s) =

{
x(s) ∈ {0, 1}|M (s)|×|Q(s)| :

∑
i∈M

∑
j∈Q

xij(s) ≤ 1

}
. (1)

The trajectory of the system is denoted in the form {(sk, xk) : k = 1, 2, ...} where

sk is the state of the system, and xk is the decision after the kth event has occurred.

To capture the dynamics of the system, the following symbology is used: sk+1 =

f(sk, xk, ω(sk, xk)), where ω(sk, xk) is a random element of an appropriate space rep-

resentation of the stochastic process related to casualty event arrivals and delays, and

where f is the transfer function.
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The reward function is determined by the value of being in the pre-decision state

sk. The reward, r(sk, xk, sk+1) is shown in Equation 2.

r(sk, xk, sk+1) =



∆1 · 0.99(tk+1−ζj)/60 if ηj = “urgent” and ε(sk+1) is such

that casualty event j was dropped off at a MTF,

∆2 · 0.99(tk+1−ζj)/240 if ηj = “priority” and ε(sk+1) is such

that casualty event j was dropped off at a MTF,

0 otherwise

(2)

Tunable parameters ∆1 and ∆2 are used to model the value trade-off between

different priority casualty events. We normalize the time the casualty event has been

in the system based on requirements outlined in Department of the Army (2007).

The reward obtained by servicing higher priority casualties decays quickly; however,

servicing higher priority casualties obtains higher utility and they are therefore often

served first. For lower priority casualties, the decay allows enough time to wait before

being forced to launch immediately, which increases the flexibility of the decision

maker.

A policy π(s) ∈X (s) maps the state space to the action space. In this form, π(s)

is the action taken when the system is in state s. Following policy π the state trajec-

tory of the system {sπk : k = 1, 2, ...} evolves according to sπk+1 = f(sπk , π(sπk), ω(sπk , π(sπk))).

The objective function is given by Equation 3,

Jπ(s) = E

[
∞∑
k=1

γτ(s
π
k )r(sπk , π(sπk), sπk+1)|sπ1 = s

]
, (3)

where γ ∈ [0, 1) is the discount factor and τ(sπk) is the time at which the system is in

state sπk . The optimal policy π∗ maximizes the expected total discounted reward and
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satisfies the following optimality Equation 4.

J(s) = max
x∈X (s)

{
E
[
r(s, x, f(s, x, ω(s, x))) + γτ(f(s,x,ω(s,x)))−τ(s)J(f(s, x, ω(s, x)))

]}
(4)

The number of possible values created by this equation is uncountable. Even if

the state space was discrete, it would be computationally intractable. In the next

section we propose an ADP approach to obtain an approximation of J(s). Utilizing

the value function approximation for J(s), high quality policies are constructed and

compared to a simple myopic policy, which is often employed in practice.

3.2 ADP Formulation

We use LSTD combined with API (as discussed by Scott et al. (2014)) to ap-

proximate an optimal solution. API is very similar to policy iteration, which is used

to solve classical MDPs. To obtain an optimal policy π∗ we need to solve Equation

4. To solve the problem, we construct an approximation of the value function. We

employ a modified version of Bellman’s equation that uses post-decision state vari-

ables. The post-decision state sxk refers to the state of the system after being in state

sk and upon taking action xij. The post-decision state variable provides tremendous

computational advantages as its use eliminates the embedded expectation within the

Bellman equation. The value of being in state sxk immediately after a decision is made

is denoted by Jx(sxk). The relationship between J(s) and Jx(sxk) is defined as:

Jx(sxk)
def
=E[J(sk+1) | sxk]. (5)

Bellman’s equation in the post-decision state becomes:
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Jxk−1(s
x
k−1) = max

x
{E[r(sk, x) + γJxk (sxk)) | sxk−1]}. (6)

Despite the reduction in dimensionality with the use of the post-decision state,

Equation 6 is still computationally intractable for the model. We proceed by develop-

ing a set of basis functions to approximate Jx(sxk). Equation 7 shows the formulation

we use in the model.

J
x
(sxk)

def
=
∑
f∈F

θfφf (s
x
k) = θ>φ(sxk), (7)

where φ(sxk) is a column vector with elements {φf (sxk)}f∈F and θ is a column vector

of basis function weights. By substituting the value function approximation Equation

7 into the Bellman equation using the post-decision state variable (Equation 6), we

obtain the following expression:

θ>φ(sxk−1) = E[r(sk, X
π(sk|θ)) + γθ>φ(sxk) | sxk−1]. (8)

Since the above equation is an approximation of the multidimensional model, a

linear model may not provide a fixed solution. However, we are still able to use this

representation as the foundation of the Least Squares Aproximate Policy Iteration

(LSAPI) algorithm. We find the policy decision, xπij(sk|θ), by solving Equation 9

Xπ(sk|θ) = arg max
x

[r(sk, x) + γθ>φ(sxk)]. (9)

The API algorithm shown in Table 2 was introduced by Bradtke & Barto (1996)

and modified by Ma & Powell (2010). Starting with an initial θ for the base policy,

we then step into the policy improvement loop. To evaluate the performance of

the policy, the post-decision state is randomly sampled and the value φ(Sxk−1,h) is
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recorded. Next, we simulate one event forward and determine the optimal decision

based on Equation 9, recording the associated reward, r(Sk,h), and basis function

values of the post-decision state, φ(Sxk,h). After completing the sampling of the post-

decision state space, we evaluate the performance of the current policy. We also

introduce a harmonic step-size rule, as indicated in Equation (10), to smooth θ.

Smoothing is required because we are sampling the state space to approximate the

Bellman Equation 4. Were Equation 4 computationally tractable, the model could

be solved using traditional value iteration, and a smoothing function would not be

required (Powell (2009)). The parameters α, G , and H are all tunable, where α is

a step size parameter, G is the number of policy improvement iterations completed

and H is the number of policy evaluation iterations completed.
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Table 2. API Algorithm

Approximate Policy Iteration Algorithm

Step 1: Initialize θ

Step 2: for g=1 to G (Policy Improvement Loop)

Step 3: for h=1 to H (Policy Evaluation Loop)

Step 4: Simulate a random post-decision state, Sxk−1,h.

Step 5: Record φ(Sxk−1,h).

Step 6: Simulate the state transition for the next event to get Sk,h.

Step 7: Determine the decision, xi,j = Xπ(Sk,h | θ) using Equation 9.

Step 8: Record r(Sk,h).

Step 9: Record φ(Sxk,h).

Step 10: End.

Step 11: Update θ using Equation 11 and step size Equation 10.

Step 12: End.

θnew = θ̂ ·
(

α

α + g − 1

)
+ θ ·

(
1− α

α + g − 1

)
(10)

To evaluate the policy, we apply least squares regression. The post-decision states,

φ(Sxk−1,h) and φ(Sxk,h), are regressed against the reward, r(Sk,h). We first establish
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the basis function matrices and reward vector. Let

Φk−1
def
=



φ(Sxk−1,1)
>

...

φ(Sxk−1,PE)>


, Φk

def
=



φ(Sxk,1)
>

...

φ(Sxk,PE)>


, r(Sk)

def
=



r(Sk,1)

...

r(Sk,PE)


, r̄(Sk)

def
=



r̄(Sk,1)

...

r̄(Sk,PE)


,

where matrices Φk−1 and Φk are rows of basis function evaluations of the sampled

post-decision states, rk is the reward vector for the sampled events, and r̄k is the

expected reward. The difference between rk and r̄k is what we will refer to as the

Bellman error, which we seek to minimization. Lagoudakis & Parr (2003) show that,

by minimizing Equation 11, an improved set of θ values can be attained,

min ||rk − r̄k||22 (11)

To capture the dynamics of this model, we need to properly represent the approx-

imations of the model with basis functions. Basis functions can be very difficult to

develop (Powell, 2012). We start by creating an indicator variable if MEDEVAC i is

available, as represented by Equation 12,

φ1,i =


1 if mi = “Idle”

0 otherwise .

∀ i = 1, 2, ..., a (12)

To capture the expected time until a MEDEVAC becomes available, the 2nd

basis function is defined in Equation 13, where dri,k represents the expected time for

MEDEVAC i to return to base after event k, dropping off casualties at a MTF. This

expected time is added to di - τ , which is the expected time for the MEDEVAC to
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complete its current movement.

φ2,i =


di − τ + dri,k if mi = “g”

0 otherwise

∀ i = 1, 2, ..., a (13)

The next basis functions, φ3,i, φ4,i, and φ5,i, capture the status of all casualty

events currently being served. Basis function φ3,i represents the expected time from

τ until MEDEVAC i arrives at the nearest MTF with its assigned casualty event.

φ3,i =


di − τ if mi = “Serving casualty event”j

0 otherwise

∀ i = 1, 2, ..., a (14)

Basis function φ4,i captures the total expected time (including launch delay) that

a casualty event will be in the system if it was served by MEDEVAC i.

φ4,i =


ζj − ti + di if mi = “Serving casualty event”j

0 otherwise

∀ i = 1, 2, ..., a (15)

Basis function φ5,i captures the priority of the casualty being served by MEDEVAC

i.

φ5,i =


ηj if mi = “Serving casualty event”j

0 otherwise

∀ i = 1, 2, ..., a (16)

The final basis function calculates the expected time in system for casualty event

j if it is to be assigned MEDEVAC i.

φ6,i,j = d∗i,j + φ2,i ∀ i = 1, 2, ..., a; j = 1, 2, ..., b, (17)
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where d∗i,j represents the expected service time from MEDEVAC base i to serve ca-

sualty event j and land at the nearest MTF. We use these basis functions as well as

their interaction terms in order to approximate the value function.

3.3 Simulation

To compare the performance of the ADP against the myopic policy, we simulate

multiple trajectories and compare the performance of the two policies. For the myopic

policy, MEDEVAC requests are served with decreasing order of priority with first-in-

first-out for like priorities. The flow chart for the model is shown in Figure 2.

Introduce Random 
Casualty Event 

Step 1: 
Queue and System 

Status Updated 

Step 3: 
Determine Next 

Event and Update 
Queue and System 

END 

Step 4: 
Execute 
Policy 

Step 2: 
End Sim? 

Figure 2. Simulation Flow Chart

The simulation is initiated by randomly generating a casualty event. A Hawkes

spatial generation process is used for casualty event generation. The Hawkes process

models situations where subsequent events are likely to occur in close proximity to the

first event Kroese & Botev (2013). This distribution occurs according to a Poisson

distribution whichwell models real-world casualty events. In Step 1, the queue and

system status are updated. In Step 2, if termination time has not been met, the loop

19



is continued. In Step 3, we stochastically determine if a casualty event has occurred

(based on λ) or if a MEDEVAC event has occurred based on travel times and the

stochastic elements. In Step 4, the system, total discounted reward, and queue are

updated, the desired policy (ADP or myopic) is executed and the simulation returns

to step 1. Step 4 incorporates the following logic check. If all MEDEVACs are idle and

there is one or more casualty event waiting in the queue, the simulation is terminated

and returns a result of “DidNotF inish”; this prevents premature convergence to a

very poor policy.
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IV. Computational Results

In this chapter, we present a notional scenario to which we apply the ADP solu-

tion methods proposed in the previous chapter, and computational experiments are

conducted using a scenario to obtain insights regarding solution quality and compu-

tational effort. We examine different features of the ADP algorithm and different

features of the MEDEVAC dispatching problem to gain further insights regarding the

performance of the proposed solution method. For the computational experiments, we

use a dual Intel Xeon E5-2650v2 workstation with 192 GB of RAM and MATLAB’s

parallel computing toolbox.

4.1 Notional Scenario

We present a scenario in which a coalition of allied countries perform peacekeeping

operations in response to islamic state militants in northern Syria. The locations for

MEDEVAC bases are likely key military tactical sites. Casualty collection centers

are selected and weighted by projected enemy locations. Figure 3 shows the 26

casualty cluster centers, five MEDEVAC locations, and two MTFs. Steady state

and high operations tempo are assumed as is a baseline casualty event arrival rate of

λ = 1
60

, representing an average casualty event arrival rate of one event per hour. Any

MEDEVAC is allowed to service any casualty event and casualty events do not need

to be served as soon as they arrive. Equal proportions of urgent and priority class

casualty event arrivals are assumed. Routine events are not considered due to the

high operational tempo, which is likely given intense combat scenarios where these

routine events would be serviced by CASEVAC or ground MEDEVAC. The reward

function utilizes weights of ∆1=10 and ∆2=2, which rewards urgent much greater

than priority casualty events.
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Figure 3. Notional Scenario Disposition

4.2 Experimental Design

For the experimental design, we focus on the problem parameter λ and the ADP

algorithmic parameters G and H . The ADP parameters are set based on our initial

experiences with implementing the model. An aggressive smoothing function is used

because, without it, we obtain cyclical results from the policy improvement steps

shown in Figure 4. With smoothing we rapidly approach the highest quality solution.

We observe that any computation time beyond 20 policy iterations obtains little policy

improvement. Similarly, after 20,000 samples for H we observed no improvement in

performance. To compare solution quality and computation time we examine G ={5,

10, 20} and H ={5,000, 10,000, 20,000} at parameter levels λ = 1
30

, 1
60

and 1
120

. The

casualty arrival rates were chosen based on high operations tempo for λ = 1
30

and 1
60

,
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and the ADP no longer out performs the myopic policy around λ = 1
120

.

A 33 Factorial design is used to examine parameters in order to gain the most

fidelity for the full design region. Table 3 shows factor levels.

Table 3. Experimental Design

λ G H

1
30

5 5,000

1
60

10 10,000

1
120

20 20,000

4.3 Experimental Design Results

Table 4 reports the results from the experimental design. The best performing

features are highlighted for λ = 1
30

and 1
60

. At λ= 1
120

multiple features are within a

95% confidence interval. The general trend for the first two casualty arrival rates is 10

policy improvement loops and at least 10,000 policy evaluation loops. Computation

time scales closely with the product G ·H . In order to effectively evaluate a policy,

the ADP requires a minimum of 10,000 policy evaluation loops. The ADP converges

quickly to the highest performing policy and policy improvement loops greater than

10 do not improve the ADP performance. As λ increases, the ADP increasingly

outperforms the myopic policy for all ADP algorithmic changes.
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Table 4. Experimental Design Results

Outter Inner 1
λ Improvement Urgent Wait Priority Wait MEDEVAC Computation

G H Time in Sec. Time in Sec. Busy % Time in Sec.

5 5000 30 48.82 ± 0.92% 182.5 398.0 90.7% 18.8

10 5000 30 51.67 ± 0.96% 186.8 388.2 90.6% 37.3

20 5000 30 52.75 ± 0.92% 190.8 377.4 90.5% 74.7

5 10000 30 57.80 ± 0.93% 187.9 375.0 90.4% 37.5

10 10000 30 61.93 ± 0.86% 191.7 369.3 88.7% 74.8

20 10000 30 50.39 ± 0.94% 186.7 386.5 90.6% 149.8

5 20000 30 51.42 ± 0.89% 177.8 397.2 90.6% 74.7

10 20000 30 59.63 ± 0.91% 190.5 369.7 89.6% 150.2

20 20000 30 53.65 ± 0.90% 192.0 373.5 90.6% 300.1

5 5000 60 24.22 ± 0.99% 170.0 234.3 84.1% 19.1

10 5000 60 24.93 ± 1.07% 170.4 230.1 83.0% 37.1

20 5000 60 26.79 ± 1.04% 177.1 265.4 80.1% 74.7

5 10000 60 26.84 ± 1.05% 166.7 232.8 83.2% 37.8

10 10000 60 26.98 ± 1.09% 168.2 232.0 82.4% 74.9

20 10000 60 27.10 ± 1.00% 167.9 230.8 82.0% 150.5

5 20000 60 25.25 ± 0.99% 167.0 240.4 84.2% 74.9

10 20000 60 30.80 ± 1.07% 154.0 396.5 81.0% 149.9

20 20000 60 28.22 ± 1.01% 165.6 237.8 81.4% 300.1

5 5000 120 1.13 ± 1.43% 115.2 120.3 34.8% 19.1

10 5000 120 -5.25 ± 1.57% 121.5 132.3 36.4% 37.5

20 5000 120 -4.88 ± 1.55% 117.9 127.0 33.8% 75.4

5 10000 120 -0.60 ± 1.47% 116.6 121.7 35.0% 37.7

10 10000 120 -0.02 ± 1.53% 113.9 121.0 32.3% 74.6

20 10000 120 -3.05 ± 1.53% 119.3 145.4 32.4% 150.1

5 20000 120 0.65 ± 1.55% 113.3 117.5 32.9% 75.2

10 20000 120 -0.74 ± 1.50% 117.2 123.7 35.4% 149.6

20 20000 120 -2.25 ± 1.52% 116.2 129.2 32.7% 300.6
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4.4 Baseline Scenario Results and Analysis

The baseline scenario uses the parameters in Table 5. We use the best quality

ADP settings for G and H

Table 5. Baseline Scenario Parameters

Problem Features ADP Algorithm Features

Parameter Description Setting Parameter Description Setting

λ Casualty Arrival Rate 60 φ Basis Function 3rd Order

∆1 Weight for urgent event 10 G Policy Improvement Loop 10

∆2 Weight for priority event 2 H Policy Evaluation Loop 20000

Table 6 shows the performance of the ADP against the myopic policy. Based on a

95% confidence interval, the third order ADP outperforms the myopic policy by 30%.

The average casualty event service times for the two casualty classification levels, and

the average proportion of time that the MEDEVACs are busy (which includes time

spent traveling back to base even if they are not actively serving a casualty event) also

outperform the myopic policy. The ADP policy focuses on servicing urgent casualty

events first, as noted by shorter wait times; moreover, MEDEVACs are being utilized

more efficiently as shown by the lower average busy percentage. Utilizing a set of

third order basis functions, achieves the best ADP performance. Use of a set of

fourth order basis functions caused problems with computational singularity while

calculating the LSTD regression Equation 11, so we did not experiment with higher

order basis functions. There are no statistical differences in computational times

between different orders of φ. We use φ, φ2, and φ3 for the rest of the experiments.
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Table 6. ADP Baseline Performance

Policy Number of Improvement urgent service priority service MEDEVAC

Basis Functions Over Myopic time (min.) time (min.) busy

Myopic - - 285.4 286.7 89.3%

ADP, 1st Order 160 17.7 ± 1.4% 167.0 299.3 87.8%

ADP, 2nd Order 320 26.0 ± 1.5% 165.5 248.9 82.3%

ADP, 3rd Order 480 30.8 ± 1.4% 154.0 235.4 81.0%

In Figure 4 we observe diminishing returns for policy improvement. Moreover,

without the smoothing function, we fail to obtain a higher quality solution. We note

this behavior across all experimental levels.
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Figure 4. Smoothing vs Non-Smoothing ADP Performance

Examination of the basis functions from the best performing third order ADP

results provides the following insight. The basis function φ5, which captures the
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interaction between MEDEVAC i and the priority of the casualty event it is serving,

has the largest impact on the policy. The number and proximity of casualty clusters to

a MEDEVAC base show an increase in magnitude for their respective basis function

coefficients (θ). Moreover, MEDEVACs co-located with the MTF show a similar

increase in magnitude, despite being further away from large groupings of casualty

clusters. Interestingly, φ1, shows low statistical significance during regression and

also has small magnitudes for its coefficients for all MEDEVACs. This is because the

ADP policy does not seek to penalize MEDEVACs for being idle, which could force

them to otherwise launch on low priority or far away casualty events.

Examination of the best ADP policy indicates that it is best to launch MEDE-

VACs which are close to casualty events and co-located with hospitals only on high

priority casualty events. It is difficult to determine the dynamics of when, and for

how long, to hold a MEDEVAC in reserve before launching because of the sheer

dimensionality of the system.

We next examine the performance of the ADP against different casualty rates by

adjusting λ. Figure 5 shows the performance of the ADP against the myopic policy.
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Figure 5. Percent Improvement Over Myopic

As λ decreases, the frequency with which casualties arrive decreases and the ADP

policies no longer outperform the myopic policy. As casualty events arrive at a slower

rate, the utility of holding MEDEVAC aircraft in reserve is diminished. At a casualty

event arrival rate of one every two hours (i.e. λ = 1
240

we observe a reduction in

performance of the ADP compared to the myopic policy, showing the limitation of

the set of basis functions and their resulting value function approximations. Keneally

et al. (2014) show that as λ goes to extremes, the difference in performance between

optimal and myopic policies becomes negligible.

The impact of changing the proportion of casualties from all urgent to all priority

casualty events is shown in Figure 6. We observe a noted improvement over the

myopic policy. This indicates the ADP policy is efficiently managing resources by
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not immediately sending the nearest available MEDEVAC, but rather waiting and/or

sending a MEDEVAC that is further away but is also not close to a high rate casualty

cluster area.
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Figure 6. Performance of Changing Proportion

We also examine the impact of using a different reward function. Instead of a

simple exponential decay, a monotonically decreasing arctan function is utilized. The

function slowly decays before reaching a threshold in proximity of the requirements

outlined by Department of the Army (2007). Figure 7 shows the comparison of the

exponential decay versus the slower decaying arctan function.
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Figure 7. Reward Functions

Table 7 shows the performance of the ADP policy versus the myopic policy with

both reward functions in the baseline scenario. We observe nearly identical perfor-

mance between the two reward functions with overlapping 95% confidence intervals.

These results indicate the ADP policy is robust to changes in the reward function.

Table 7. Reward Function Comparison

Reward Function Performance

Exponential 30.8% ± 1.40%

Arctan 31.0% ± 1.48%

Lastly, there are experimental rotary wing aircraft which could potentially be put

into service and which can travel significantly faster than the UH-60 A/L Blackhawk.

To examine the impact of these aircraft, the maximum speed with which the MEDE-

VAC aircraft can travel is adjusted, and stochastic parameters remain constant. Table
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8 shows the percent increase in average airspeed over the UH-60 A/L.

Table 8. Performance vs increasing Airspeed

Airspeed Increase vs UH-60

Baseline 25% 50% 75%

Myopic Improvement (Against Baseline Myopic) - 50.05% 89.45% 126.12%

Urgent Service Time (min.) 286.1 168.5 104.8 77.2

Priority Service Time (min.) 284.4 166.8 104.1 76.8

MEDEVAC Busy % 89.3% 78.6% 61.6% 47.8%

ADP Improvement (Against Baseline Myopic) 30.78% 68.32% 102.81% 127.12%

ADP Improvement (Against Like Myopic) 30.78% 12.17% 7.05% 0.44%

Urgent Service Time (min.) 154.0 116.8 90.8 74.8

Priority Service Time (min.) 396.5 140.3 103.4 81.5

MEDEVAC Busy % 70.2% 69.6% 56.6% 46.9%

It is reasonable to assume newer rotary wing designs can increase airpseed 25%-

50% compared the the UH-60 A/L. This increase in speed has a significant impact

in the overall performance for both ADP and myopic policies. We see diminishing

returns for the ADP compared to the myopic policy as the airspeed is increased.

Despite this, decision makers can still benefit from high quality dispatching solutions.

When we examine computational effort more closely, we find the ADP solution

only requires about 150 seconds for the baseline scenario. The largest computational

effort came from running the simulation. For each event in the simulation, the best

action must be determined, as indicated by Equation 9. In addition to these calcu-

lations, we require 500 runs in order to achieve our desired confidence interval. The

computation times for the simulation using the myopic and ADP policies are shown

in Table 9.
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Table 9. Simulation run times

Policy Computation Time (sec.) Runs

Myopic 34.625 500

ADP 884.93 500

The computation time of calculating Equation 9 is about 25 times that of the hard-

coded myopic policy. Despite this burden, it is still possible to compute the ADP

policy and run the simulation in under 20 minutes. These results are promising, as

the model could readily be adapted and applied to current operations to yield timely

results.
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V. Conclusions

This thesis examines the MEDEVAC dispatching problem. The intent of the re-

search is to determine policies that increase the survivability of battlefield casualties.

Development of an MDP model of the MEDEVAC dispatching problem enables ex-

amination of many different scenarios. Solving the MDP requires the use of ADP.

By using the post-decision state and approximating the value of being that state,

our model became computationally tractable. To examine the performance of poli-

cies produced by our model, we created a scenario and simulated the outcome of the

established policies.

The ADP policy was able to increase overall utility by 30% compared to the myopic

policy in our baseline scenario. Additionally, MEDEVAC busy time was decreased

by 9%, indicating more efficient use of MEDEVAC aircraft. The basis function coef-

ficients revealed MEDEVAC aircraft in close proximity to higher probability casualty

clusters were more valuable than aircraft based further away. This is an intuitive re-

sult. These higher value MEDEVACs should likely not be dispatched for low priority

casualty events while the lower value MEDEVACs may be dispatched instead. The

ADP policy was able capture the overall time it would take for any MEDEVAC to

service any casualty event. This is important, as a MEDEVAC may possibly become

available which could service a casualty event faster than an idle MEDEVAC that

is further away. Maximum speed of the aircraft has the largest impact on perfor-

mance. Results indicate a 25% increase in speed increases utility by 50%. Even with

the performance increase from speed, the ADP policy still provides increased utility

compared to the myopic policy.

This model and its results are beneficial to military planners and decisions mak-

ers. Military planners can use this model to compare policies as well as evaluate

different potential MEDEVAC station locations in order to maximize performance.
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Decision makers can use current military intelligence and operational experience to

identify areas in which casualties are likely to occur. Once these areas are identified,

decisions makers can make informed decisions about the value of each MEDEVAC

and maximize the utilization of their resources.

Results also indicate the criticality of MEDEVAC travel speed. Military planners

and acquisitions (those responsible for implementing new technology into the military)

can use this model to examine the impact of capacity compared to speed. This

information can be used for future design and development for a replacement to the

UH-60 A/L. Perhaps a mix of large capacity UH-60 A/Ls and a new-lower capacity,

high-speed design would improve overall casualty survivability.

The model does not take into account dynamic repositioning or dispatching. Air-

craft are required to return to base before they become available. In many situations,

decision makers will immediately dispatch a MEDEVAC who dropped off a casualty

event at an MTF, but has bit yet returned to their original base, to a new casualty

event. This possibility was not considered in this thesis as crew limitations do not

always allow this decision to be feasible.

Dynamic in-flight rerouting is not considered. If a MEDEVAC has capacity to

take on additional casualties and a casualty event occurs in close proximity, it may be

worth sacrificing time for the casualties on-board in order to reduce the service time

for the new casualty event. Communication limitations as well as uncertainty about

specific casualty events (e.g, the actual condition of the casualty event onboard versus

the survivability function) make this a complex decision. However, for low priority

casualty events, dynamic rerouting would likely have significantly less negative impact

on those events and have a large positive impact on the casualty event which would

be served faster.

Future extensions to this model could include dynamic routing and rerouting,
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comparing different aircraft types, and comparing MEDEVAC placement (i.g, mul-

tiple aircraft at a base and some bases empty). For a long range planning tool,

researchers should focus on the impact of MEDEVAC placement and aircraft designs.

These results could provide valuable insight for military planners.

Implementing the ADP policy into active operations is an incredibly difficult

proposition. The myopic policy is often used because it is simple to implement and

performs fairly well as long as casualty events arrive at a frequency less than two

hours. The important point for decisions makers to garner is understanding the value

of specific MEDEVACs and how to utilize them efficiently.

35



VI. Appendix

6.1 Appendix A

λ Arrival rate of casualty events
s The current state of the system
τ Current system time
ε Current event
a Number of MEDEVAC Units
mi Information about the ith MEDEVAC
b Size of the casualty event queue
qj Information about the casualty event in the jth position of the queue
σi Status of the MEDEVAC
di Expected time to complete current movement
ti Start time of current MEDEVAC movement
δj Status of the casualty event
lj Location of the casaulty event
ζj Time the casualty event arrived in the system
ηj Priority of the casualty event
xk Decision after the kth event
ω Stochastic process for state transition
∆ Utility multiplier for casualty event priorities
α Harmonic step size parameter
dri,k Expected time for MEDEVAC i to return to base after event k
d∗i,j Expected time from base i to pickup and drop off casualty event j
G The number of Policy Improvement Loops
H The number of states sampled per Policy Evaluation Loop
M The set of idle MEDEVAC aircraft
Q The set of idle casualty events
X The set of feasible actions

Table 10. Parameters
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6.2 Appendix B
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